Jhe Excellence Key...

CODE:2401-AG-4-TS-XII-20-21

General Instructions :-

- All Ouestion are compulsory : (i)
- (ii) This question paper contains **36** questions.
- (iii) Question 1-20 in **PART-** A are Objective type question carrying 1 mark each.
- (iv) Question 21-26 in **PART** -B are sort-answer type question carrying 2 mark each.
- (v) Question 27-32 in **PART** -C are long-answer-I type question carrying 4 mark each.
- (vi) Question 33-36 in **PART** -D are long-answer-II type question carrying 6 mark each
- (vii) You have to attempt only one if the alternatives in all such questions.
- (viii) Use of calculator is not permitted.
- (ix) Please check that this question paper contains 8 printed pages.

Code number given on the right-hand side of the question paper should be written on the title page of the answer-book by the candidate.

EXAMINATION 2020 - 21

Time : 3 Hours CLASS - XII

Maximum Marks : 80

REG.NO:-TMC -D/79/89/36

MATHEMATICS

PART – A (Question 1 to 20 carry 1 mark each.)

SECTION I: Single correct answer type

This section contains 12 multiple choice question. Each question has four choices (A) , (B), (C) & (D) out of which ONLY ONE is correct. Q.1 3 2 4 4 6 -1] $|, B = \begin{bmatrix} 0 & 1 \end{bmatrix}, C = \begin{bmatrix} 1 \end{bmatrix}$, then the expression which is not defined $A = \begin{vmatrix} 3 & 0 \end{vmatrix}$ 2 -1 2 2 1 - 2 5

is (a) $A^2 + 2B - 2A$ (b) CC' (c) B'C (d) (a) By inspection, A^2 and A AB matrix is of order 3×3 , while B matrix is of order 3×2 . Therefore, $A^2 + 2B - 2A$ is not defined.

Q.2 If $\mathbf{r} \cdot \mathbf{i} = \mathbf{r} \cdot \mathbf{j} = \mathbf{r} \cdot \mathbf{k}$ and $|\mathbf{r}| = 3$, then $\mathbf{r} =$

TMC/D/79/89

P.T.O. 1 **Target Mathematics by- Dr.Agyat Gupta** visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office: 89-Laxmi bai colony Ph.: 4010685(O), 7000636110(O) Mobile : <u>9425109601(P)</u>

ARGET MATHEMA by (M.Sc, B.Ed., M.Phill, P.hd)

पजियन क्रमांक

	(a) $\pm 3(\mathbf{i} + \mathbf{j} + \mathbf{k})$ (b) $\pm \frac{1}{3}(\mathbf{i} + \mathbf{j} + \mathbf{k})$
	(c) $\pm \frac{1}{\sqrt{3}}(\mathbf{i} + \mathbf{j} + \mathbf{k})$ (d) $\pm \sqrt{3}(\mathbf{i} + \mathbf{j} + \mathbf{k})$ (d) Let $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$. Since
	$\mathbf{r}.\mathbf{i} = \mathbf{r}.\mathbf{j} = \mathbf{r}.\mathbf{k} \Rightarrow x = y = z \qquad \dots (i)$
	Also $ \mathbf{r} = \sqrt{x^2 + y^2 + z^2} = 3 \Rightarrow x = \pm \sqrt{3}$, {By (i)}
	Hence the required vector $\mathbf{r} = \pm \sqrt{3}(\mathbf{i} + \mathbf{j} + \mathbf{k})$.
	Trick : As the vector $\pm \sqrt{3}(\mathbf{i} + \mathbf{j} + \mathbf{k})$ satisfies both the conditions
Q.3	From a pack of 52 cards two are drawn with replacement. The
	probability, that the first is a diamond and the second is a king, is
	(a) $\frac{1}{26}$ (b) $\frac{17}{2704}$ (c) $\frac{1}{52}$ (d) None of these (c)
	Required probability = $P(Diamond) \cdot P(king) = \frac{13}{52} \cdot \frac{4}{52} = \frac{1}{52}$.
Q.4	The distance of the point $(4, 3, 5)$ from the <i>y</i> -axis is
	(a) $\sqrt{34}$ (b)5 (c) $\sqrt{41}$ (d) $\sqrt{15}$ (c) Distance from <i>y</i> -axis is $\sqrt{x^2 + z^2}$
	$=\sqrt{4^2+5^2} = \sqrt{16+25} = \sqrt{41}$.
Q.5	If $4\sin^{-1} x + \cos^{-1} x = \pi$, then X is equal to
	(a) 0 (b) $\frac{1}{2}$ (c) $-\frac{\sqrt{3}}{2}$ (d) $\frac{1}{\sqrt{2}}$ (b) We know that $4\sin^{-1}x + \cos^{-1}x = \pi$
	$\implies 3\sin^{-1}x + \sin^{-1}x + \cos^{-1}x = \pi$
	$\implies 3\sin^{-1}x = \pi - \frac{\pi}{2} = \frac{\pi}{2}$
	$\implies \sin^{-1} x = \pi/6 \implies x = \sin \frac{\pi}{6} = \frac{1}{2}.$
Q.6	The probability of hitting a target by three marksmen are $\frac{1}{2}$, $\frac{1}{3}$ and $\frac{1}{4}$
	respectively. The probability that one and only one of them will hit the
	target when they fire simultaneously, is
	(a) $\frac{11}{24}$ (b) $\frac{1}{12}$ (c) $\frac{1}{8}$ (d) None of these (a) Here $P(A) = \frac{1}{2}$,
	$P(B) = \frac{1}{3}$, $P(C) = \frac{1}{4}$: Hence required probability
	$= P(A)P(\overline{B})P(\overline{C}) + P(\overline{A})P(B)P(\overline{C}) + P(\overline{A})P(\overline{B})P(C).$

Q.7	$\int \frac{x dx}{1 - x \cot x} =$
	(a) $\log(\cos x - x \sin x) + c$ (b) $\log(x \sin x - \cos x) + c$
	(c) $\log(\sin x - x \cos x) + c$ (d) None of these
	(c) $\int \frac{x dx}{1 - x \cot x} = \int \frac{x dx}{1 - x \frac{\cos x}{\sin x}} = \int \frac{x \sin x}{\sin x - x \cos x} dx$
	$=\int \frac{dt}{t} = \log t = \log(\sin x - x\cos x) + c.$
	{Putting $\sin x - x \cos x = t$,
	$\implies [\cos x - (-x \sin x + \cos x)] dx = dt \Rightarrow x \sin x dx = dt \}$
Q.8	The necessary condition for third quadrant region in xy-plane, is
	(a) $x > 0$, $y < 0$ (b) $x < 0$, $y < 0$ (c) $x < 0$, $y > 0$ (d) $x < 0$, $y = 0$ ans B
Q.9	The perpendicular distance of the point (2, 4, -1) from the line $\frac{x+5}{1} = \frac{y+3}{4} = \frac{z-6}{-9}$ is
	(a)3 (b) 5 (c) 7 (d) 9 (c) The perpendicular
	distance of (2, 4, -1) from the line $\frac{x+5}{1} = \frac{y+3}{4} = \frac{z-6}{-9}$ is
	$\left\{ (2+5)^{2} + (4+3)^{2} + (-1-6) - \left[\frac{1(2+5) + 4(4+3) - 9(-1-6)}{\sqrt{1+16+81}} \right]^{2} \right\}^{1/2}$
	$= \sqrt{\frac{147}{\sqrt{98}}} = \sqrt{147} - 98 = \sqrt{49} = 7.$
Q.10	If $f(x) = \begin{cases} \frac{1 - \cos 4x}{x^2}, & \text{when } x < 0 \\ a, & \text{when } x = 0 \\ \frac{\sqrt{x}}{\sqrt{(16 + \sqrt{x})} - 4}, & \text{when } x > 0 \end{cases}$, is continuous at $x = 0$, then the value of 'a' will be
	(a) 8 (b) $- 8$ (c) 4 (d) None of these (a)
	$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \left(\frac{2\sin^2 2x}{(2x)^2} \right) 4 = 8 \qquad \qquad \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \sqrt{16 + \sqrt{x} + 4} = 8. $ Hence
	a = 8.
	Fill in the blanks (Q11 – Q15)
Q.11	If A and B are invertible matrices of order 3, $ A = 2$ and $ (AB)^{-1} = -\frac{1}{\epsilon}$,
TMC/D/79/89	9 3 P.T.O.

Target Mathematics by- Dr.Agyat Gupta visit us: agyatgupta.com; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph. : 4010685(O), 7000636110(O) Mobile : <u>9425109601(</u>P)

Visit us at www.agyatgupta.com				
	then B $\frac{1}{ AB } = -\frac{1}{6} \Rightarrow \frac{1}{ A B } = -\frac{1}{6} \Rightarrow B = -3.$			
Q.12	If $y = \log_{10} x + \log_x 10 + \log_x x + \log_{10} 10$, then			
	$\frac{dy}{dx} =\frac{1}{x \log_e 10} - \frac{\log_e 10}{x (\log_e x)^2}$			
Q.13	If $\begin{bmatrix} 1 & -1 & x \end{bmatrix} \begin{bmatrix} 0 & 1 & -1 \\ 2 & 1 & 3 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = 0$, Then $x =$. Ans $x = 2$.			
Q.14	The tangent to the curve $y = ax^2 + bx$ at $(2, -8)$ is parallel to x-axis. Then a $= \dots \& b = \dots a = 2 b = -8$			
Q.15	If \vec{a} and \vec{b} are two non-collinear unit vectors such that $\left \vec{a} + \vec{b} \right = \sqrt{3}$, Then			
	$(2\vec{a}-5\vec{b}).(3\vec{a}+\vec{b}) =$ Ans: $-\frac{11}{2}$			
	OR			
	For two non zero vector \vec{a} and \vec{b} write when $ \vec{a} + \vec{b} = \vec{a} + \vec{b} $ holds if			
	Ans : they are like parallel vector			
	(Q16 - Q20) Answer the following questions			
Q.16	Evaluate: $\int_0^{\pi/2} \frac{\cos^2 x dx}{1+3\sin^2 x}.$			
	Let I = $\int_{0}^{\pi/2} \frac{\cos^2 x dx}{1 + 3\sin^2 x} \qquad \Longrightarrow I = \int_{0}^{\pi/2} \frac{\sec^2 x dx}{\sec^4 x + 3\sec^2 x \tan^2 x}$			
	$\therefore I = \int_{0}^{\pi/2} \frac{\sec^2 x dx}{\sec^2 x (1 + \tan^2 x + 3\tan^2 x)} \qquad \qquad I = \int_{0}^{\pi/2} \frac{\sec^2 x dx}{(1 + \tan^2 x)(1 + 4\tan^2 x)}$			
	$I = \int_{0}^{\infty} \frac{dt}{(1+t^{2})(1+4t^{2})} \implies I = -\frac{1}{3} \int_{0}^{\infty} \left(\frac{1}{1+t^{2}} - \frac{4}{1+4t^{2}}\right) dt = \frac{\pi}{6}.$			
Q.17	Evaluate: $\int \frac{dx}{\sqrt{\sin^3 x \sin(x+\alpha)}} \cdot \mathbf{Ans} - 2\cos ec\alpha \sqrt{(\cos\alpha + \cot x \sin\alpha)} + c$			
Q.17	Evaluate: $\int \frac{(\sin x - x \cos x) dx}{x(x + \sin x)}$			

Visit us at www.agyatgupta.com

	$\int \frac{\sin x - x \cos x}{x(x + \sin x)} dx I = \int \frac{x + \sin x - x - x \cos x}{x(x + \sin x)} dx$
	$I = \int \left(\frac{x + \sin x}{x(x + \sin x)} - \frac{x + x \cos x}{x(x + \sin x)}\right) dx$ $I = \int \frac{1}{x} dx - \int \frac{1 + \cos x}{x + \sin x} dx$
	$I = \log x - \log t + C$
	OR
	Evaluate: $\int \sqrt{\frac{\cos x - \cos^3 x}{1 - \cos^3 x}} dx$
	Solution: $\int \sqrt{\frac{\cos x - \cos^3 x}{1 - \cos^3 x}} dx = \int \sqrt{\frac{\cos x}{1 - \cos^3 x}} \sin x dx$
	$= -\int \sqrt{\frac{t}{1-t^3}} dt = -\int \frac{\sqrt{t}}{\sqrt{1-(t^{3/2})^2}} dt = -\frac{2}{3}\int \frac{\frac{3}{2}\sqrt{t}}{\sqrt{1-(t^{3/2})^2}} dt$
	$=\frac{2}{3}\cos^{-1}(t^{3/2})+c=\frac{2}{3}\cos^{-1}(\cos^{3/2}x)+c$
Q.18	Find the sum of the degree and the order for the following differential
	equation $\frac{d}{dx} \left[\left(\frac{d^2 y}{dx^2} \right)^4 \right] = 0 \qquad \Rightarrow 4 \left(\frac{d^2 y}{dx^2} \right)^3 \times \frac{d^3 y}{dx^3} = 0.$
	Since order and degree of the differential equation is 3 and 1 respectively. So their sum is 4. Δns
	order 3, or degree 1
	\therefore Degree + order = 4
Q.19	Let R_1 be a relation defined by $R_1 = \{(a,b) \mid a \ge b, a, b \in R\}$ Then R_1 is
	(a) An equivalence relation on R
	(b) Reflexive, transitive but not symmetric
	(c) Symmetric. Transitive but not reflexive
	(d)Neither transitive not reflexive but symmetric ans b
	OR
	Let $P = \{(x, v) x^2 + v^2 = 1, x, v \in R\}$ Then P is
	(a) Reflexive (b) Symmetric
	(a) Renexive (b) Symmetrie

		Visit	us at www	w.agyatg	upta.co	m				
	(c)Transitive	(d)	Anti-syr	nmetric	<mark>ans b</mark>					
Q.20	If $M = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$	and	$M^2 - \lambda M$ -	$-I_2=0,$	then	find	the	value	of	λ
	$M^{-} - \lambda M - I_{2} =$ $\Rightarrow \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} -$ $\Rightarrow \begin{bmatrix} 5 - \lambda & 8 - 2 \\ 8 - 2\lambda & 13 - 3 \end{bmatrix}$	$\begin{bmatrix} \lambda & 2\lambda \\ 2\lambda & 3\lambda \end{bmatrix}$ $\begin{bmatrix} \lambda \\ 3\lambda \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = O$ $\begin{bmatrix} 0 \\ 1 \end{bmatrix} \Longrightarrow 5 - \lambda$	$\Rightarrow \begin{bmatrix} 5 & 8 \\ 8 & 13 \end{bmatrix}$ $= 1, 8 - 2\lambda$	$-\begin{bmatrix} \lambda & 2\lambda \\ 2\lambda & 3\lambda \end{bmatrix}$ $\mu = 0, 13 - 100$	$\begin{bmatrix} 1 \\ 0 \end{bmatrix} - \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $3\lambda = 1$	$\begin{bmatrix} 0\\1 \end{bmatrix} = O$			
	$\Rightarrow \lambda = 4$, whi	ch satis	fies all th	e three e	quations	<mark>.</mark>				
		PA	RT – B	(Questio	on 21 to	26 cai	rry 2	mark e	ach.)	
Q.21	A bag contain one without in three balls be $= \frac{A}{A} = \{RRB, RBB, RBB, RBB, RBB, RBB, RBB, RBB$	ns 5 rec ceplacen black c, <i>RBB</i> , <i>R</i> BR, <i>RBB</i> }	l balls and nent. Wh if the firs prr}& b = Required	d 3 black at is the t balls ar at least probabili	t balls the probability of the probability is below the probability of the probability o	hree b ility th ans A he three $\frac{P(x)}{P(x)}$	alls an hat at A = the e ball $\frac{A \cap B}{C(A)}$	the drawn least on the first basis drawn $=\frac{25/56}{35/56}=$	n one all is is bl $\frac{5}{7}$	by the red ack
Q.22	Prove	tł	nat:	ta	$\ln^{-1}\left(\frac{6x-1}{1-1}\right)$	$\left(\frac{-8x^3}{2x^2}\right)$	\tan^{-1}	$\frac{4x}{1-4x^2} =$	$= \tan^{-2}$	¹ 2x
	$\tan^{-1}\left(\frac{3(2x)}{1-3}\right)$	$\frac{-(2x)^3}{8(2x)^2}$	-) $-$ tan ⁻¹	$\left(\frac{2(2x)}{1-(2x)^2}\right)$	$\overline{2}$ let 2	$\mathbf{x} = \mathbf{tar}$	nθ			
	$\tan^{-1}\left(\frac{3\tan\theta}{1-3}\right)$	$\frac{\theta - \tan^3}{3\tan^2\theta}$	$\left(\frac{\theta}{2}\right) - \tan^{-\frac{1}{2}}$	$\left(\frac{2\tan\theta}{1-\tan^2\theta}\right)$	$\left(\frac{\partial}{\partial \theta}\right)$					
	\Rightarrow tan ⁻¹ (tan3	$(\theta) - tai$	$n^{-1}(\tan 2\theta)$							
	$\Rightarrow 3\theta - 2\theta =$	$\theta = \tan^2 \theta$	n ⁻¹ 2x H.P							
			OR							
	Prove that :	1				F	,	<u>\</u> ٦		
	$\sin^{-1}\sin\left(\frac{33\pi}{7}\right) +$	$-\cos^{-1}\left(\cos^{-1}\right)\right)\right)\right)\right)}\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)$	$\left(\frac{46\pi}{7}\right) + \tan(1)$	$n^{-1}\left(-\tan\frac{1}{2}\right)$	$\left(\frac{3\pi}{8}\right) + \cot \left(\frac{3\pi}{8}\right)$	t^{-1} cot	$\left(-\frac{19\pi}{8}\right)$	$\left \frac{13\pi}{7} \right = \frac{13\pi}{7}$	[∓] . <mark>Ans</mark>	3.
	$Sin^{-1}\left(\sin\frac{33\pi}{7}\right) = (-46\pi)$	$\frac{2\pi}{7}$	12-2	-						
	$\cos^{-1}\left(\cos\frac{40\pi}{7}\right) =$	$\frac{4\pi}{7}$ tan ⁻¹	$-\tan\frac{13\pi}{8} = \frac{3}{8}$	$\frac{\pi}{3}$ cot ⁻¹ $\left\{ \cot\left(-\frac{\pi}{3}\right) \right\}$	$\left \frac{19\pi}{8}\right = \frac{5\pi}{8}$					
TMC/D/79/89)		6				P.T.O.			

	$\therefore \frac{2\pi}{7} + \frac{4\pi}{7} + \frac{3\pi}{8} + \frac{5\pi}{8} = \frac{13\pi}{7}$
Q.23	If $y = \tan^{-1}\left(\frac{x}{a}\right) + \log_{1}\sqrt{\frac{x-a}{x+a}}$: prove that $\frac{dy}{dx} = \frac{2ax^{2}}{x^{4}-a^{4}}$. ANS : We have
	$y = \tan^{-1}\left(\frac{x}{a}\right) + \log\sqrt{\frac{x-a}{x+a}} \Rightarrow y = \tan^{-1}\frac{x}{a} + \frac{1}{2}[\log(x-a) - \log(x+a)]$
	On differentiating w.r.t x both sides, we get $:\frac{dy}{dx} = \frac{1}{1+\frac{x^2}{a^2}} \cdot \frac{1}{a} + \frac{1}{2} \left[\frac{1}{x-a} - \frac{1}{x+a} \right]$
	$\Rightarrow \frac{dy}{dx} = \frac{a}{a^2 + x^2} + \frac{1}{2} \left[\frac{2a}{x^2 - a^2} \right] = \frac{a}{x^2 + a^2} + \frac{a}{x^2 + a^2} \div \frac{dy}{dx} = \frac{2ax^2}{x^4 - a^4}$
Q.24	Find the intervals in which the function f defined by $f(x) = -2x^3 - 9x^2 - 12x + 1$ is(i) strictly increasing(ii)strictly decreasing . f'(x) = -6(x + 1) (x + 2)
	$f'(x) = 0 \Longrightarrow x = -2, x = -1$
	\Rightarrow Intervals are $(-\infty, -2), (-2, -1)$ and $(-1, \infty)$
	Getting $f'(x) > 0$ in $(-2, -1)$ and $f'(x) < 0$ in $(-\infty, -2) \cup (-1, \infty)$ $\Rightarrow f(x)$ is strictly increasing in $(-2, -1)$
	and strictly decreasing in $(-\infty, 2) \cup (-1, \infty)$
Q.25	If $\vec{\mathbf{a}} = \mathbf{i} + \mathbf{j} + \mathbf{k}$, $\vec{\mathbf{b}} = \mathbf{i} + 3\mathbf{j} + 5\mathbf{k}$ and $\vec{\mathbf{c}} = 7\mathbf{i} + 9\mathbf{j} + 11\mathbf{k}$, then find the area of the
	parallelogram having diagonals $\vec{\mathbf{a}} + \vec{\mathbf{b}}$ and $\vec{\mathbf{b}} + \vec{\mathbf{c}}$. Ans $\vec{P} \times \vec{O} = -8i + 16i - 8k \therefore A = \frac{1}{ \vec{P} \times \vec{O} } = \sqrt{384}$
	z = z = z = 0
	Let $\vec{a} = 2\vec{i} + \vec{k}$, $\vec{b} = \vec{i} + \vec{i} + \vec{k}$ and $\vec{c} = 4\vec{i} - 3\vec{i} + 3\vec{k}$ be three vectors find a vector
	\vec{r} which satisfies $\vec{r} \times \vec{b} = \vec{c} \times \vec{b}$ and $\vec{r} \bullet \vec{a} = 0$. Ans. $\vec{r} = \frac{1}{3}i - \frac{20}{3}j - \frac{2}{3}k$
Q.26	Find the symmetrical form, the equation of the line $2x-2y+3z-2=0, x-y+z+1=0$. ANS. $\frac{x+5}{1}=\frac{y}{1}=\frac{z-4}{0}$
	PART – C (Question 27 to 32 carry 4 mark each.)
TMC/D/79/89	7 P.T.O.

TMC/D/79/89

	Visit us at www.agyatgupta.com
Q.28	Find the particular solution of the differential equation
	$(xdy - ydx)y \cdot \sin\left(\frac{y}{x}\right) = (ydx + xdy)x \cos\frac{y}{x}$, given that $y = \pi$ when $x = 3$.
	Ans. $\log \left \sec \frac{y}{x} \right - \log \frac{y}{x} = 2 \log x + \log \frac{2}{3\pi} OR 2xy \cos y / x = 3\pi$
Q.29	Evaluate : $\int_{0}^{2} x ^{2} + 2x - 3 dx$ ans: We have $x^{2} + 2x - 3 = (x + 3)(x - 1)$.
	$x^{2}+2x-3>0$ for $x < -3$ or $x > 1$ and $x^{2}+2x-3<0$ for $-3 < x < 1$ so
	$\begin{vmatrix} x^{2} + 2x - 3 \end{vmatrix} = \begin{cases} x + 2x - 3 & \text{for } x < -3 & \text{or } x > 1 \\ -(x^{2} + 2x - 3) & \text{for } -3 < x < 1 \end{cases}$
	$\int_{0}^{2} \left x^{2} + 2x - 3 \right dx = \int_{0}^{1} \left x^{2} + 2x - 3 \right dx + \int_{1}^{2} \left x^{2} + 2x - 3 \right dx = -\int_{0}^{1} (x^{2} + 2x - 3) dx + \int_{1}^{2} (x^{2} + 2x - 3) dx$
	$= -\left[\frac{x^3}{3} + x^2 - 3x\right]_0^1 + \left[\frac{x^3}{3} + x^2 - 3x\right]_1^2 = 4$
Q.30	Testing is very important during the Covid-19 pandemic. By examining the test done at a government hospital, the probability that Covid-19 is detected when a person is actually suffering is 0.99. The probability that the doctor diagnosis incorrectly that a person has Covid-19 on the basis of test is 0.001. In a metro city, 1 in 1000 suffers from Covid-19, a person is selected at random and is diagnosed to have Covid-19.
	CORONAVIRUS COVID-19
	(i) What is the probability that a person selected is not having Covid-19?
	(ii) What is the probability of a person diagnosed with Covid-19.
	(iii) Assume that the population of metro city is 2000000. How many persons are expected to suffer from Covid-19?
	(iv) What is the probability that a person actually has Covid-19, when he is diagnosed to have Covid-19?
	(v) What is the probability that the doctor diagnosis correctly that a selected person has Covid-19 on the basis of test .
TMC/D/79/89	9 P.T.O.

Q.31 Given that $P(E) = \frac{1}{1000} = 0.001$ \therefore the probability that a person selected is not having Covid-19, $P(E) = 1 - 0.001 = 0.999$ (ii) (d) $P(A) = P(A E)P(E) + P(A E)P(E)$ $\Rightarrow = \frac{99}{100} \times \frac{1}{1000} + \frac{1}{1000} \times \frac{999}{1000} = 0.001989$. (iii) (d) As 0.1% persons are expected to suffer from Covid-19. \therefore No. of persons suffering from Covid-19 = (2000000) $\times 0.1\% = 2000000 \times \frac{1}{1000} = 2000$ (iv) (a) By Bayes' theorem, $P(E A) = \frac{P(A E)P(E)}{P(A E)P(E) + P(A E)P(E)}$ $= \frac{\frac{99}{100} \times \frac{1}{1000}}{\frac{1000}{1000}} = \frac{999}{100} \times \frac{1}{1000} \times \frac{999}{1000} = \frac{110}{221}$. (v) (c) Given that the probability that the doctor diagnosis incorrectly that a person had Covid-19 on the basis of test is 0.001. Therefore, the required probability = 1001 = .999 . Q.31 An aeroplane can carry a maximum of 200 passengers. A profit of Rs 1000 is made on each executive class ticket and a profit of Rs 600 is made on each executive class ticket. The airline reserves at least 20 seats for executive class. However, at least 4 times as many passengers prefer to the security of the security of the set of the security class ticket. The airline reserves at least 20 seats for executive class. However, at least 4 times as many passengers prefer to the security class. However, at least 4 times as many passengers prefer to the security class. However, at least 4 times as many passengers.
1000∴ the probability that a person selected is not having Covid-19, $P(\bar{E}) = 1 - 0.001 = 0.999$ (ii)(d) $P(A) = P(A E)P(E) + P(A \bar{E})P(\bar{E})$ \Rightarrow $= \frac{99}{100} \times \frac{1}{1000} + \frac{1}{1000} \times \frac{999}{1000} = 0.001989$.(iii)(d) As 0.1% persons are expected to suffer from Covid-19. \therefore No. of persons suffering from Covid-19 = (2000000)×0.1% = 200000× $\frac{1}{1000} = 2000$ (iv)(a) By Bayes' theorem, $P(E A) = \frac{P(A E)P(E)}{P(A E)P(E) + P(A \bar{E})P(\bar{E})}$ $=$ $\frac{99}{100} \times \frac{1}{1000} + \frac{1}{1000} \times \frac{999}{1000}$ $=$ $\frac{99}{100} \times \frac{1}{1000} + \frac{1}{1000} \times \frac{999}{1000}$ $=$ $\frac{990}{100} \times \frac{1}{1000} + \frac{1}{1000} \times \frac{999}{1000}$ $=$ $\frac{990}{100} \times \frac{1}{221}$.(v) (c) Given that the probability that the doctor diagnosis incorrectly that a person ha Covid-19 on the basis of test is 0.001.Therefore, the required probability = 1001 = .999 .Q.31An aeroplane can carry a maximum of 200 passengers. A profit of Rs 1000 is made on each executive class ticket and a profit of Rs 600 is made o each economy class ticket. The airline reserves at least 20 seats for executive class. However, at least 4 times as many passengers prefer to
(iii) (d) As 0.1% persons are expected to since Hom Covid-19. $\therefore \text{ No. of persons suffering from Covid-19} = (2000000) \times 0.1\% = 2000000 \times \frac{1}{1000} = 2000$ (iv) (a) By Bayes' theorem, P(E A) = $\frac{P(A E)P(E)}{P(A E)P(E) + P(A \overline{E})P(\overline{E})}$ $= \frac{\frac{99}{100} \times \frac{1}{1000}}{\frac{999}{100} \times \frac{1}{1000} + \frac{1}{1000} \times \frac{999}{1000}}{\frac{999}{1000} \times \frac{1}{1000} + \frac{1}{1000} \times \frac{999}{1000}}$ $= \frac{\frac{990}{1989} = \frac{110}{221}.$ (v) (c) Given that the probability that the doctor diagnosis incorrectly that a person ha Covid-19 on the basis of test is 0.001. Therefore, the required probability = 1001 = .999 . Q.31 An aeroplane can carry a maximum of 200 passengers. A profit of Rs 1000 is made on each executive class ticket and a profit of Rs 600 is made on each executive class ticket. The airline reserves at least 20 seats for executive class. However, at least 4 times as many passengers prefer to the time of the times as many passengers prefer to the times as the times as many passengers prefer to the times as the times as many passengers prefer to the times as the times as many passengers prefer to the times as the times passengers passengers passengers passengers passen
(iv) (a) By Bayes' theorem, $P(E A) = \frac{P(A E)P(E)}{P(A E)P(E) + P(A \overline{E})P(\overline{E})}$ $= \frac{\frac{99}{100} \times \frac{1}{1000}}{\frac{99}{100} \times \frac{1}{1000} + \frac{1}{1000} \times \frac{999}{1000}}{\frac{999}{1000} + \frac{1}{221}}.$ (v) (c) Given that the probability that the doctor diagnosis incorrectly that a person had Covid-19 on the basis of test is 0.001. Therefore, the required probability = 1001 = .999 . Q.31 An aeroplane can carry a maximum of 200 passengers. A profit of Rs 1000 is made on each executive class ticket and a profit of Rs 600 is made on each executive class ticket. The airline reserves at least 20 seats for executive class. However, at least 4 times as many passengers prefer to the profit of the second s
99×1 1000×1000 99×1 $1000 \times 1000 \times 1000$ $99 \times 1000 \times 1000$ $90 \times 1000 \times 1000 \times 1000 \times 1000$ $90 \times 1000 \times 1000 \times 1000 \times 1000$ $90 \times 1000 \times 1000 \times 1000 \times 1000 \times 1000 \times 1000$ $90 \times 1000 \times 1000 \times 1000 \times 1000 \times 1000 \times 1000 \times 10000 \times 1000 \times 1000 \times 1000 \times 1000 \times 10000 \times 10000 \times 1000 \times 10000 \times$
 (v) (c) Given that the probability that the doctor diagnosis incorrectly that a person ha Covid-19 on the basis of test is 0.001. Therefore, the required probability = 1001 = .999 . Q.31 An aeroplane can carry a maximum of 200 passengers. A profit of Rs 1000 is made on each executive class ticket and a profit of Rs 600 is made or each economy class ticket. The airline reserves at least 20 seats for executive class. However, at least 4 times as many passengers prefer to the protect of the protect of
 Covid-19 on the basis of test is 0.001. Therefore, the required probability = 1001 = .999 . Q.31 An aeroplane can carry a maximum of 200 passengers. A profit of Rs 1000 is made on each executive class ticket and a profit of Rs 600 is made or each economy class ticket. The airline reserves at least 20 seats for executive class. However, at least 4 times as many passengers prefer to the security of the
Therefore, the required probability = 1001 = .999 .Q.31An aeroplane can carry a maximum of 200 passengers. A profit of Rs 1000 is made on each executive class ticket and a profit of Rs 600 is made or each economy class ticket. The airline reserves at least 20 seats for executive class. However, at least 4 times as many passengers prefer to the security of t
Q.31 An aeroplane can carry a maximum of 200 passengers. A profit of Rs 100 is made on each executive class ticket and a profit of Rs 600 is made or each economy class ticket. The airline reserves at least 20 seats for executive class. However, at least 4 times as many passengers prefer to
travel by economy class than by the executive class. Determine how many tickets of each type must be sold in order to maximize the profit for th airline. What is the maximum profit? Answer : Let the airline sell x tickets of executive class and y tickets of economy class. The mathematical formulation of the given problem is as follows. Maximize $z = 1000x + 600y$ (1) subject to the constraints, $x \ge 20$, $x+y \le 200$, and $y - 4x \ge 0$, $y \ge 0$ The feasible region determined by the constraints is as follows.

TMC/D/79/89

	Visit us at www.agyatgupta.com
	\Rightarrow (100,5) \in R and (5,2) \in R
	But $100 \le 8$ i.e. $100 < 2^3$
	$\therefore (100,2) \notin \mathbf{R} $
	$\therefore (100,5) \in \mathbb{R}, (5,2) \in \mathbb{R} \implies (100,2) \notin \mathbb{R}$
	Hence R is neither reflexive nor symmetric nor transitive
	PART – D (Question 33 to 36 carry 6 mark each.)
Q.33	$ x x^3 x^4 - 1 $
	If $x \neq y \neq z$ and $\begin{vmatrix} y & y^3 & y^4 - 1 \\ z & z^3 & z^4 - 1 \end{vmatrix} = 0$ then prove that $xyz(xy + yz + zx) = x + \begin{vmatrix} y & y \\ z & z^3 & z^4 - 1 \end{vmatrix}$
	y+ Z.
	$\begin{vmatrix} x & x^3 & x^4 \end{vmatrix} \begin{vmatrix} x & x^3 & 1 \end{vmatrix}$ $(1 & x^2 & x^3) \begin{vmatrix} x & x^3 & 1 \end{vmatrix}$
	$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 $
	$\begin{vmatrix} y & y & y \\ y & z & y \end{vmatrix} = \begin{vmatrix} y & y & 1 \\ y & z & z \end{vmatrix} = 0 \Longrightarrow xyz \begin{vmatrix} 1 & y & y \\ y & z & z \end{vmatrix} = 0$
	$\begin{vmatrix} z & z^3 & z^4 \end{vmatrix} \begin{vmatrix} z & z^3 & 1 \end{vmatrix} \qquad (1 & z^2 & z^3) \begin{vmatrix} z & z^3 & 1 \end{vmatrix}$
	$\Rightarrow xyz(x-y)(y-z)(z-x)(xy+yz+zx) - (x-y)(y-z)(z-x)(x+y+z) = 0$
	$(x - y)(y - z)(z - x) \{ xyz(xy + yz + zx) - (x + y + z) \} = 0$
	$\therefore xyz(xy + yz + zx) = x + y + z$
	OR
	If $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ prove that $(aI + bA)^n = a^n I + na^{n-1}bA$, where I is the unit
	matrix of order 2 and n is a positive integer.
	Answer
	It is given that $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
	To show: $P(n):(aI+bA)^n = a^nI + na^{n-1}bA, n \in \mathbb{N}$
	We shall prove the result by using the principle of mathematical induction.
	For $n = 1$, we have:
	$P(1):(aI+bA) = aI + ba^{0}A = aI + bA$
	Therefore, the result is true for $n = 1$.
	Let the result be true for $n = k$.
	That is,
	$\mathbf{P}(k): (aI+bA)^{k} = a^{k}I + ka^{k-1}bA$
TMC/D/79/89	12 P.T.O.

	Now, we prove that the result is true for $n = k + 1$.
	Consider
	$(aI + bA)^{k+1} = (aI + bA)^{k} (aI + bA)$
	$= (a^k I + ka^{k-1}bA)(aI + bA)$
	$=a^{k+1}I + ka^k bAI + a^k bIA + ka^{k-1}b^2 A^2$
	$= a^{k+1}I + (k+1)a^{k}bA + ka^{k-1}b^{2}A^{2} \qquad \dots (1)$
	Now, $A^2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = O$
	$(aI + bA)^{k+1} = a^{k+1}I + (k+1)a^kbA + O$
	$=a^{k+1}I + (k+1)a^kbA$
	Therefore, the result is true for $n = k + 1$.
	Thus, by the principle of mathematical induction, we have:
	$(aI+bA)^n = a^nI + na^{n-1}bA$ where $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $n \in \mathbb{N}$
Q.34	Using integration, find the area of the triangle bounded by the lines $x + 2y$
	= 2, y - x = 1 and $2x + y = 7$. Ans
	B(2,3) A(0,1) C(4,-1)
	$A_{1} = \int_{-1}^{3} \frac{7 - y}{2} dy; A_{2} = \int_{1}^{3} (y - 1) dy; A_{3} = \int_{-1}^{1} (2 - 2y) dy \Longrightarrow A_{1} - A_{2} - A_{3} = 6unit^{2}$
Q.35	A poster is to contain 72sq. cm. of printed matter . The margins at the top
	and bottom are to be 4 cm each and at the sides 2 cm each side wide. Find
	the dimensions if total area of the poster is minimum.
	Solution: Let A denote the total area of the poster of length x cm and breadth y cm. $\Rightarrow \qquad A = xy \qquad \dots(1)$

TMC/D/79/89

TMC/D/79/89

Let *r* be the radius of the circle. Then, $2\pi r = 28 - l \Rightarrow r = \frac{1}{2\pi}(28 - l)$. The combined areas of the square and the circle (A) is given by, $A = (\text{side of the square})^2 + r^2$ $=\frac{l^2}{16}+\pi\left[\frac{1}{2\pi}(28-l)\right]^2$ $=\frac{l^2}{16}+\frac{1}{4\pi}(28-l)^2$ $\therefore \frac{dA}{dl} = \frac{2l}{16} + \frac{2}{4\pi} (28 - l) (-1) = \frac{l}{8} - \frac{1}{2\pi} (28 - l)$ $\frac{d^2 A}{dl^2} = \frac{1}{8} + \frac{1}{2\pi} > 0$ Now, $\frac{dA}{dl} = 0 \implies \frac{l}{8} - \frac{1}{2\pi} (28 - l) = 0$ $\Rightarrow \frac{\pi l - 4(28 - l)}{8\pi} = 0$ $\Rightarrow (\pi+4)l-112=0$ $\Rightarrow l = \frac{112}{\pi + 4}$ Thus, when $l = \frac{112}{\pi + 4}, \frac{d^2 A}{dl^2} > 0.$ \therefore By second derivative test, the area (A) is the minimum when $l = \frac{112}{112}$. Q.36 Find the vector equation of the planes through the intersection of $(2\hat{i}+6\hat{j})+12=0$ and $\bar{r}.(3\hat{i}-\hat{j}+4\hat{k})=0$ which are at a unit distance from the origin. Hence find the distance of the plane thus obtained from the plane 2x 4z4y+() The required plane can be written as $\vec{r}.(2\hat{i}+6\hat{j})+12+\lambda\left[\vec{r}.(3\hat{i}-\hat{j}+4\hat{k})\right]=0$ i.e., $(2+3\lambda)x + (6-\lambda)y + 4\lambda z + 12 = 0...(i)$ As plane (i) is at unit distance from the origin (0, 0, 0) so, $p = \left| \frac{0(2+3\lambda) + 0(6-\lambda) + 0(4\lambda) + 12}{\sqrt{(2+3\lambda)^2 + (6-\lambda)^2 + (4\lambda)^2}} \right| = 1 \qquad \therefore \lambda = \pm 2.$

TMC/D/79/89

Replacing these values of λ in (i), we get : 2x + y + 2z + 3 = 0, x - 2y + 2z - 3 = 0...(A)Let $\pi: 2x - 4y + 4z - 9 = 0$. Observe that the d.r.'s of planes (A) and π are in proportion i.e., $\frac{1}{2} = \frac{-2}{-4} = \frac{2}{4}$ which implies that these planes are parallel planes.So the distance between plane (A) and π is, $\frac{|-6+9|}{\sqrt{4+16+16}} = \frac{3}{6}$ or $\frac{1}{2}$ units.बिना शिक्षा प्राप्त किये कोई व्यक्ति अपनी परम ऊँचाइयों को नहीं छू सकता.